BCA-205(N)

B. C. A. (Second Semester) **EXAMINATION, 2016**

(New Course)

Paper Fifth

MATHEMATICS—II

Time: Three Hours]

[Maximum Marks: 75

Note: Section A is compulsory. Attempt any seven questions from Section B and attempt any one question from Section C.

Inst.: The candidates are required to answer only in serial order. If there are many parts of a question, answer them in continuation.

Section-A

8 each

http://csjmuonline.com

http://csjmuonline.com

1. (a) If
$$u = (lx + my + nz)^2 - (x^2 + y^2 + z^2)$$
 and $l^2 + m^2 + n^2 = 1$, show that:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

Find the equation of plane through (1, 1, -1) and (1, -1, 1) and perpendicular to the plane x + 2y + 2z = 5.

B-50

P. T. O.

[2]

BCA-205(N)

- 2. (a) Evaluate $\iint xy(x+y) dx dy$ over the area between $y = x^2$ and y = x.
 - Discuss maximum and minimum of function $x^3 + y^3 - 6xy$.

Section-B

6 each

http://csjmuonline.com

- 3. Prove that A B = B' A' where A and B are any two non-empty sets and A' denotes complement of set A.
- 4. Let: $A = \{1, 2, 3, 4\}$ and $R = \{(1, 2), (2, 3), (3, 4), (2, 4)\}.$ Find transitive closure of R.
- 5. Find the equation of sphere through point (2, 1, 3) and the circle $x^2 + v^2 = 4, z = 0$.
- 6. Let $f: \mathbf{R} \to \mathbf{R}$ be defined by $f(x) = 1 + x^2$ and $g: \mathbf{R} \to \mathbf{R}$ by $g(x) = \log(x)$. Find (a) $f \circ g$ (b) $f \circ f$, where R is set of real numbers.
- 7. If $y = f(x) = \left(\frac{2x-1}{5x-2}\right)$, prove that f(y) = x.
- 8. Define POSET. Draw Hasse diagram (A, /) where $A = \{3, 4, 12, 24, 48, 72\}$ and the relation '/' is a/b if a divides b.
- 9. Show that the lattice L represented by diagram is complemented but not distributive.

B-50

http://csjmuonline.com

http://csjmuonline.com

http://csjmuonline.com

10. Find direction cosines l, m, n of two line which are connected by relation: 1 - 5m + 3n = 0 $7l^2 + 5m^2 - 3n^2 = 0$

1.

$$u = \sin^{-1}\left(\frac{x^3 + y^3}{x + y}\right)$$

then show that:

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 2\tan u$$

12. The mid-points of sides of triangle are (1, 5, -1), (0, 4,-2) and (2, 3, 4). Find the vertices of triangle.

17 each

13. (a) If
$$u = f(y-z, z-x, x-y)$$
 prove that:

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$$

- Find the points on $z^2 = xy + 1$ nearest to origin.
- 14. (a) Prove that if R is an equivalence relation on set A, then R-1 is also an equivalence relation on A. http://csimuonline.com
 - Let R be equivalence relation on set of integers Z as $R = \{(x, y) : x - y \text{ is divisible by 3}\}$. Prove that R is an equivalence relation.

http://csimuonline.com

http://csjmuonline.com

http://csjmuonline.com

points 15. (a) the in which Find line $\frac{x+1}{-1} = \frac{y-12}{5} = \frac{z-7}{2}$ cuts surface $11x^2 - 5y^2 + z^2 = 0.$

Find the volume of tetrahedron bounded by the co-ordinate planes and the plane x + y + z = 1.

Your old paper & get 10/-पुराने पेपर्स भैजे और 10 रुपये पार्ये,

Paytm or Google Pay 🛪

http://csjmuonline.com

Whatsapp @ 9300930012

BCA-205(N)

B-50

B-50

http://csimuonline.com

P. T. O.