Roll No.

BCA-504(N)

B. C. A. (Fifth Semester) **EXAMINATION, Dec., 2017**

(New Course)

Paper Fourth

NUMERICAL METHODS

Time: Three Hours

Maximum Marks: 75

Note: Attempt questions from all Sections as directed.

Inst.: The candidates are required to answer only in serial order. If there are many parts of a question, answer them in continuation.

Section-A

3 each

http://csjmuonline.com

(Short Answer Type Questions)

Note: Attempt all questions from this Section.

Prove that:

$$\left(\frac{\Delta^2}{E}\right)x^3 = 6x$$

- Define Descartes' rule of signs.
- (C) A second degree polynomial passes through (0, 1), (1, 3), (3, 3). Find the polynomial.

http://csimuonline.com

D-19

P. T. O.

Find the missing figure in the following table:

x	у
0	1
1	2
2	
3	8. 16
4 .	16
5 \	-
6	64

- Find the third divided difference f(3,4,5,6)where $f(x) = x^3 - x$.
- (F) Prove that:

$$D = \frac{1}{n} \left[\nabla + \frac{\nabla^2}{2} + \frac{\nabla^3}{3} + \dots \right]$$

- (G) Calculate the value of $\int_{-3}^{3} x^4 dx$ by Simpson's $\frac{1}{3}$ rule and trapezoidal rule. Also compare with exact value. http://csimuonline.com
- Solve $x^3 9x + 1 = 0$ for the root lying between 2 and 4 by Regula-Falsi method.
- Explain Gauss's Elimination method for solving (I) linear equation.

Section—B

12 each

http://csjmuonline.com

(Long Answer Type Questions)

Note: Attempt any two questions.

2. Use Picard's method to approximate the value of y when x = 0.1 given that y = 1 when x = 0 and $\frac{dy}{dx} = 3x + y^2.$

http://csjmuonline.com

3. 'Use Runge-Kutta method to find approximate value of y for x = .2 in steps of 0.1 of:

$$\frac{dy}{dx} = x + y^2$$

given that y = 1 where x = 0.

4. Interpolate by mean of Gauss' backward central interpolation formula of the population for the year 1966, given the following table:

• •	
Year	Population (10 ³)
1931	12
1941	15
1951	20
1961	27
1971	39
i981	52
	1

5. Find the first and second derivative of the function given below at the point x = 1.2.

x .	у
1	0
2	1
3	5
4	6
5	8

[4]

http://csjmuonline.com

BCA-504(N)

Section-C

12 each

(Long Answer Type Questions)

Note: Attempt any two questions.

- 6. Find the value of x when $x^2 5x + 2 = 0$ by Newton-Raphson method.
- 7. Find a real root of the equation $x^3 2x 5 = 0$ by the method of false position correct to three decimal places.
- 8. Apply Gauss-Seidel iteration method to solve the equations:

$$20x + y - 2z = 17$$
$$3x + 20y - z = -18$$
$$x - 3y + 20z = 25$$

9. By means of Newton's divided difference formula find the value of f(2), f(8) and f(15) from the following table:

x	f(x)
4	48
5	100
7	294
10	900
11	1210
13	2028

BCA-504(N)

D-19

2300

http://csjmuonline.com

http://csjmuonline.com