BCA-202(N)

B. C. A. (Second Semester) EXAMINATION, May, 2018

(New Course)

Paper Second

DIGITAL ELECTRONICS AND COMPUTER ORGANIZATION

Time: Three Hours

[Maximum Marks: 75

http://csjmuonline.com

http://csjmuonline.com

Note: Attempt questions from all Sections as directed.

Inst.: The candidates are required to answer only in serial order. If there are many parts of a question, answer them in continuation.

Section—A

(Short Answer Type Questions)

Note: All questions are compulsory. Each question carries 3 marks.

- State the absorption law of Boolean Algebra.
 - **(B)** State and prove the De-Morgan's theorem and simplify the expression:

[((AB)' C)' D]'

Find the minterms of the logical expression:

Y = AB'C' + AB'C + ABC + ABC'

(B-54) P. T. O.

- (D) Find the base (or radix) of the number system such that the following equation holds: $\frac{312}{20} = 13.1$.
- What is Cache memory ? Design 32 × 8 RAM structure.
- How many 256 × 8 RAM chips are needed to provide a memory capacity of 2048 bytes? Also find the number of address lines and data lines.
- Express the boolean function F = x + y'z as a product of max term.
- (H) What is flip-flop? Explain the working of RS flip-flop using logic diagram.
- Represent decimal number 8620 in BCD and Excess-3 code.

Section-B

(Long Answer Type Questions)

Note: Attempt any two questions. Each question carries. 12 marks.

- Implement EX-OR gate with NOR gate only. 2. (a)
 - Simplify the following Boolean function: $F(P, Q, R, S) = \Sigma(2, 3, 4, 5, 6, 7, 11, 14, 15)$ and implement of means of NAND Gate.
 - Differentiate combinational (c) between and sequential circuit.
- Design a BCD to excess-3 code converter.
- Design a MUX for the function of time variable:

$$F(A, B, C) = \Sigma(1, 3, 5, 6)$$

Draw the implementation table.

(B-54)

http://csjmuonline.com

- (b) What is decoder ? Show the logic circuit of 3 × 8 decoder.
- 5. Write short notes on any two of the following:
 - (i) Full Adder circuit
 - (ii) Simplify the Boolean function:

$$F(w, x, y, z) = \Sigma(0, 1, 2, 3, 7, 8, 10)$$

$$d(w, x, y, z) = \Sigma (5, 6, 11, 15)$$

(iii) Virtual memory

Section—C

(Long Answer Type Questions)

Note: Attempt any two questions. Each question carries 12 marks.

6. What is Encoder? Explain.

Construct a logic diagram of 4×16 line decoder using 3×8 line decoder.

7. What is counter? Explain.

Design a counter that has repeated sequence of six states 0, 1, 2, 4, 5, 6 using JK flip-flop.

- 8. (a) Explain the working of RS and D flip-flops.
 - (b) Implement the following function with NAND gates:

$$F(x, y, z) = \Sigma(0, 6)$$

9. Design a logic construction of 32 × 4 ROM. What is the size of decoder used?

BCA-202(N)

3,200

http://csjmuonline.com

(B-54)