BCA-504(N)

B. C. A. (Fifth Semester) **EXAMINATION, Dec., 2013**

(New Course)

Paper Fourth

NUMERICAL METHODS

[Maximum Marks: 75 Time: Three Hours

Note: Section A is compulsory. Attempt any seven questions out of ten from Section B and any one question from Section C.

Section—A

(Numerical/Analytical/Problematic Questions)

Show that: 1. (a)

R-85

 $\Delta \log f(x) = \log \left\{ 1 + \frac{\Delta f(x)}{f(x)} \right\}$

Estimate the missing term in the following table: (b)

x	f(x)
0	1
1	3
2	9
3	?
4	81

Give the reason why the resulting value differs from 3^3 .

P. T. O.

http://csjmuonline.com

http://csjmuonline.com

http://csimuonline.com

[2] BCA-504(N)

2. Use Euler's method with h = 0.05 to find the solution of the differential equation:

$$\frac{dy}{dx} = x + y$$

with the initial condition $x_0 = 0$, $y_0 = 1$, in the range $0 \le x \le 0.20$.

Section-B 6 each

http://csjmuonline.com

(Short Answer Type Questions)

- 3. Find a root of the equation $x^3 x 11 = 0$ correct to three decimals using Bisection method.
- 4. Using Newton-Raphson method evaluate to two decimal figures, the root of the equation $e^x = 3x$ lying between 0
- 5. Find the third divided difference f(3,4,5,6), where $f(x) = x^1 - x.$
- 6. Using Gauss elimination method, solve :

$$x + y + z = 6$$

 $3x + 3y + 4z = 20$
 $2x + y + 3z = 13$

7. Find $\frac{dy}{dx}$ at $x = 0 \cdot 1$ from the following table:

y
0.9975
0-9900
0.9776
0.9604

- 8. Calculate the value of $\int_{-\pi}^{3} x^{6} dx$ by Simpson's $\frac{1}{4}$ rule and compare with the exact value.
- 9. Calculate $\int_0^6 \frac{dx}{1+x^2}$ by using Simpson's $\frac{1}{6}$ rule. Compare the result with the actual value of the integral.

10. Find f (10) by Lagrange's interpolation formula:

x	f(x)
5	12
6	13
9	14
11	16

- 11. Find the real root of $3x \cos x 1 = 0$ by the method of False position.
- 12. Obtain the function whose first difference is $x^3 + 3x^2 + 5x + 12$.

Section--C

18 each

http://csjmuonline.com

(Long Answer Type Questions)

13. Use Gauss-Seidel method to solve the system of equations:

$$3x + y + z = 1$$

 $x + 3y - z = 11$
 $x - 2y + 4z = 21$

- 14. Use Runge-Kutta method to approximate y when $x = 0 \cdot 1$ and $x = 0 \cdot 2$, given that x = 0 when y = 1 and $\frac{dy}{dx} = x + y$.
- 15. From the following table, find the number of students who obtained less than 55 marks:

Marks	No. of Students
30-40	21
4050	32
50-60	41
6070	25
7080	21

BCA-504(N)

1,900